Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Proc Biol Sci ; 291(2020): 20232946, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565156

RESUMO

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.


Assuntos
Helmintos , Carneiro Doméstico , Animais , Ovinos , Encurtamento do Telômero , Reprodução , Telômero
2.
Mol Ecol ; 33(9): e17335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549143

RESUMO

Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, FROH, we use chromosome-specific inbreeding coefficients (FROHChr) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of FROHChr from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.


Assuntos
Cervos , Aptidão Genética , Genética Populacional , Depressão por Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Cervos/genética , Depressão por Endogamia/genética , Polimorfismo de Nucleotídeo Único/genética , Modelos Genéticos , Endogamia , Homozigoto , Genótipo , Masculino , Feminino
3.
Evol Lett ; 8(2): 222-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525027

RESUMO

Embryonic lethal mutations are arguably the earliest and most severe manifestation of inbreeding depression, but their impact on wild populations is not well understood. Here, we combined genomic, fitness, and life-history data from 5,925 wild Soay sheep sampled over nearly three decades to explore the impact of embryonic lethal mutations and their evolutionary dynamics. We searched for haplotypes that in their homozygous state are unusually rare in the offspring of known carrier parents and found three putatively semi-lethal haplotypes with 27%-46% fewer homozygous offspring than expected. Two of these haplotypes are decreasing in frequency, and gene-dropping simulations through the pedigree suggest that this is partially due to purifying selection. In contrast, the frequency of the third semi-lethal haplotype remains relatively stable over time. We show that the haplotype could be maintained by balancing selection because it is also associated with increased postnatal survival and body weight and because its cumulative frequency change is lower than in most drift-only simulations. Our study highlights embryonic mutations as a largely neglected contributor to inbreeding depression and provides a rare example of how harmful genetic variation can be maintained through balancing selection in a wild mammal population.

4.
Heredity (Edinb) ; 132(4): 202-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341521

RESUMO

Estimates of narrow sense heritability derived from genomic data that contain related individuals may be biased due to the within-family effects such as dominance, epistasis and common environmental factors. However, for many wild populations, removal of related individuals from the data would result in small sample sizes. In 2013, Zaitlen et al. proposed a method to estimate heritability in populations that include close relatives by simultaneously fitting an identity-by-state (IBS) genomic relatedness matrix (GRM) and an identity-by-descent (IBD) GRM. The IBD GRM is identical to the IBS GRM, except relatedness estimates below a specified threshold are set to 0. We applied this method to a sample of 8557 wild Soay sheep from St. Kilda, with genotypic information for 419,281 single nucleotide polymorphisms. We aimed to see how this method would partition heritability into population-level (IBS) and family-associated (IBD) variance for a range of genetic architectures, and so we focused on a mixture of polygenic and monogenic traits. We also implemented a variant of the model in which the IBD GRM was replaced by a GRM constructed from SNPs with low minor allele frequency to examine whether any additive genetic variance is captured by rare alleles. Whilst the inclusion of the IBD GRM did not significantly improve the fit of the model for the monogenic traits, it improved the fit for some of the polygenic traits, suggesting that dominance, epistasis and/or common environment not already captured by the non-genetic random effects fitted in our models may influence these traits.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Humanos , Ovinos/genética , Animais , Linhagem , Genótipo , Genômica , Fenótipo , Carneiro Doméstico/genética , Modelos Genéticos
5.
Biol Lett ; 19(7): 20230050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433328

RESUMO

Early- versus late-life trade-offs are a central prediction of life-history theory that are expected to shape the evolution of ageing. While ageing is widely observed in wild vertebrates, evidence that early-late trade-offs influence ageing rates remains limited. Vertebrate reproduction is a complex, multi-stage process, yet few studies have examined how different aspects of early-life reproductive allocation shape late-life performance and ageing. Here, we use longitudinal data from a 36-year study of wild Soay sheep to show that early-life reproduction predicts late-life reproductive performance in a trait-dependent manner. Females that started breeding earlier showed more rapid declines in annual breeding probability with age, consistent with a trade-off. However, age-related declines in offspring first-year survival and birth weight were not associated with early-life reproduction. Selective disappearance was evident in all three late-life reproductive measures, with longer-lived females having higher average performance. Our results provide mixed support for early-late reproductive trade-offs and show that the way early-life reproduction shapes late-life performance and ageing can differ among reproductive traits.


Assuntos
Envelhecimento , Mamíferos , Feminino , Animais , Ovinos , Peso ao Nascer , Fenótipo , Reprodução
6.
J Anim Ecol ; 92(9): 1869-1880, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403651

RESUMO

Gastrointestinal nematode (GIN) parasites play an important role in the ecological dynamics of many animal populations. Recent studies suggest that fine-scale spatial variation in GIN infection dynamics is important in wildlife systems, but the environmental drivers underlying this variation remain poorly understood. We used data from over two decades of GIN parasite egg counts, host space use, and spatial vegetation data from a long-term study of Soay sheep on St Kilda to test how spatial autocorrelation and vegetation in an individual's home range predict parasite burden across three age groups. We developed a novel approach to quantify the plant functional traits present in a home range to describe the quality of vegetation present. Effects of vegetation and space varied between age classes. In immature lambs, strongyle parasite faecal egg counts (FEC) were spatially structured, being highest in the north and south of our study area. Independent of host body weight and spatial autocorrelation, plant functional traits predicted parasite egg counts. Higher egg counts were associated with more digestible and preferred plant functional traits, suggesting the association could be driven by host density and habitat preference. In contrast, we found no evidence that parasite FEC were related to plant functional traits in the host home range in yearlings or adult sheep. Adult FEC were spatially structured, with highest burdens in the north-east of our study area, while yearling FEC showed no evidence of spatial structuring. Parasite burdens in immature individuals appear more readily influenced by fine-scale spatial variation in the environment, highlighting the importance of such heterogeneity for our understanding of wildlife epidemiology and health. Our findings support the importance of fine-scale environmental variation for wildlife disease ecology and provides new evidence that such effects may vary across demographic groups within a population.


Assuntos
Nematoides , Infecções por Nematoides , Parasitos , Doenças dos Ovinos , Animais , Ovinos , Herbivoria , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/veterinária , Animais Selvagens , Fezes/parasitologia , Doenças dos Ovinos/parasitologia , Fatores Etários
7.
Ecol Evol ; 13(5): e10058, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37168987

RESUMO

Life history trade-offs are ubiquitous across species and place constraints on the timing of life history events, including the optimal age at first reproduction. However, studies on lifetime breeding success of male mammals are rare due to sex-biased dispersal and the requirement for genetic paternity inferences. We studied the correlates and apparent fitness consequences of early life reproduction among males in a free-living population of Soay sheep (Ovis aries) on St Kilda, Scotland. We investigated the factors associated with early breeding success and the apparent consequences of early success for survival and future reproduction. We used genetic paternity inferences, population data, and individual morphology measurements collected over 30 years. We found that individuals born in years with low-density population size had the highest early life breeding success and singletons were more likely to be successful than twins. Individuals that bred successfully at 7 months were more likely to survive their first winter. For individuals that survived their first winter, early breeding success was not associated with later breeding success. As individual heterogeneity affects breeding success, we believe that variation in individual quality masks the costs of early reproduction in this population. Our findings provide no evidence for selection for delayed age at reproduction in male Soay sheep.

8.
Heredity (Edinb) ; 130(4): 242-250, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801920

RESUMO

The distribution of runs of homozygosity (ROH) may be shaped by a number of interacting processes such as selection, recombination and population history, but little is known about the importance of these mechanisms in shaping ROH in wild populations. We combined an empirical dataset of >3000 red deer genotyped at >35,000 genome-wide autosomal SNPs and evolutionary simulations to investigate the influence of each of these factors on ROH. We assessed ROH in a focal and comparison population to investigate the effect of population history. We investigated the role of recombination using both a physical map and a genetic linkage map to search for ROH. We found differences in ROH distribution between both populations and map types indicating that population history and local recombination rate have an effect on ROH. Finally, we ran forward genetic simulations with varying population histories, recombination rates and levels of selection, allowing us to further interpret our empirical data. These simulations showed that population history has a greater effect on ROH distribution than either recombination or selection. We further show that selection can cause genomic regions where ROH is common, only when the effective population size (Ne) is large or selection is particularly strong. In populations having undergone a population bottleneck, genetic drift can outweigh the effect of selection. Overall, we conclude that in this population, genetic drift resulting from a historical population bottleneck is most likely to have resulted in the observed ROH distribution, with selection possibly playing a minor role.


Assuntos
Cervos , Endogamia , Animais , Cervos/genética , Homozigoto , Genoma , Genótipo , Recombinação Genética , Polimorfismo de Nucleotídeo Único
9.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36652410

RESUMO

The genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage mapping on a kindred of 364 deer detected a pronounced QTL on chromosome 21 explaining 29% of the variance in birth weight, suggesting that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association (GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome. This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that the proportion of variance explained by each chromosome was slightly positively correlated with its size. These three findings highlight a highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the differences in how associations are modelled between QTL mapping and GWA. Our study suggests that models of polygenic adaptation are the most appropriate to study the evolutionary trajectory of this trait.


Assuntos
Cervos , Locos de Características Quantitativas , Animais , Estudo de Associação Genômica Ampla/métodos , Peso ao Nascer/genética , Cervos/genética , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Ecol Evol ; 12(12): e9639, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532132

RESUMO

Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to understanding the processes behind trait evolution. The 'animal model' is a popular method for estimating quantitative genetic parameters such as heritability and genetic correlation and involves fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker density, potentially affecting results. Increasing density of markers is also expected to increase the power to detect quantitative trait loci (QTL). In order to understand how the density of genetic markers affects the results of quantitative genetic analyses, we estimated heritability and performed genome-wide association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two different SNP densities: a dataset of 37,037 genotyped SNPs and an imputed dataset of 417,373 SNPs. Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP dataset revealed four new SNP-trait associations that were not found with the lower density dataset, as well as confirming all previously-found QTL. We also demonstrated that fitting fixed and random effects in the same step as performing GWAS is a more powerful approach than pre-correcting for covariates in a separate model.

11.
J Evol Biol ; 35(10): 1352-1362, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063153

RESUMO

A cost of reproduction may not be observable in the presence of environmental or individual heterogeneity because they affect the resources available to individuals. Individual space use is critical in determining both the resources available to individuals and the exposure to factors that mediate the value of these resources (e.g. competition and parasitism). Despite this, there has, to our knowledge, been little research to understand how between-individual differences in resource acquisition, caused by variation in space use, interact with environmental variation occurring at the population scale to influence estimates of the cost of reproduction in natural populations. We used long-term data from the St. Kilda Soay sheep population to understand how differences in age, relative home range quality, and average adult body mass, interacted with annual variation in population density and winter North Atlantic Oscillation index to influence over-winter survival and reproduction in the subsequent year, for females that had invested into reproduction to varying degrees. Our results suggest that Soay sheep females experience costs both in terms of future survival and future reproduction. However, we found little evidence that estimated costs of reproduction vary depending on relative home range quality. There are several possible causes for the lack of a relationship between relative home range quality and our estimate of the costs experienced by females. These include the potential for a correlation between relative home range quality and reproductive allocation to mask a relationship between home range quality and reproductive costs, as well as the potential for the benefit of higher quality home ranges being offset by higher densities. Nevertheless, our results raise questions regarding the presence or context-dependence of relationships between resource access and the estimated cost of reproduction.


Assuntos
Comportamento de Retorno ao Território Vital , Reprodução , Animais , Feminino , Densidade Demográfica , Estações do Ano , Ovinos
12.
Evolution ; 76(11): 2605-2617, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111977

RESUMO

In natural populations, quantitative traits seldom show short-term evolution at the rate predicted by evolutionary models. Resolving this "paradox of stasis" is a key goal in evolutionary biology, as it directly challenges our capacity to predict evolutionary change. One particularly promising hypothesis to explain the lack of evolutionary responses in a key offspring trait, body weight, is that positive selection on juveniles is counterbalanced by selection against maternal investment in offspring growth, given that reproduction is costly for the mothers. Here, we used data from one of the longest individual-based studies of a wild mammal population to test this hypothesis. We first showed that despite positive directional selection on birth weight, and heritable variation for this trait, no genetic change has been observed for birth weight over the past 47 years in the study population. Contrarily to our expectation, we found no evidence of selection against maternal investment in birth weight-if anything, selection favors mothers that produce large calves. Accordingly, we show that genetic change in birth weight over the study period is actually lower than that predicted from models including selection on maternal performance; ultimately our analysis here only deepens rather than resolves the paradox of stasis.


Assuntos
Cervos , Humanos , Animais , Cervos/genética , Seleção Genética , Peso ao Nascer , Herança Materna , Animais Selvagens
13.
Parasitology ; 149(13): 1749-1759, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052517

RESUMO

Monitoring the prevalence and abundance of parasites over time is important for addressing their potential impact on host life histories, immunological profiles and their influence as a selective force. Only long-term ecological studies have the potential to shed light on both the temporal trends in infection prevalence and abundance and the drivers of such trends, because of their ability to dissect drivers that may be confounded over shorter time scales. Despite this, only a relatively small number of such studies exist. Here, we analysed changes in the prevalence and abundance of gastrointestinal parasites in the wild Soay sheep population of St. Kilda across 31 years. The host population density (PD) has increased across the study, and PD is known to increase parasite transmission, but we found that PD and year explained temporal variation in parasite prevalence and abundance independently. Prevalence of both strongyle nematodes and coccidian microparasites increased during the study, and this effect varied between lambs, yearlings and adults. Meanwhile, abundance of strongyles was more strongly linked to host PD than to temporal (yearly) dynamics, while abundance of coccidia showed a strong temporal trend without any influence of PD. Strikingly, coccidian abundance increased 3-fold across the course of the study in lambs, while increases in yearlings and adults were negligible. Our decades-long, intensive, individual-based study will enable the role of environmental change and selection pressures in driving these dynamics to be determined, potentially providing unparalleled insight into the drivers of temporal variation in parasite dynamics in the wild.


Assuntos
Coccídios , Doenças Transmissíveis , Gastroenteropatias , Enteropatias Parasitárias , Nematoides , Parasitos , Ovinos , Animais , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Carneiro Doméstico , Gastroenteropatias/epidemiologia , Gastroenteropatias/veterinária
14.
Parasitology ; 149(13): 1702-1708, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052566

RESUMO

Helminths are common parasites of wild ungulates that can have substantial costs for growth, mortality and reproduction. Whilst these costs are relatively well documented for mature animals, knowledge of helminths' impacts on juveniles is more limited. Identifying these effects is important because young individuals are often heavily infected, and juvenile mortality is a key process regulating wild populations. Here, we investigated associations between helminth infection and overwinter survival in juvenile wild red deer (Cervus elaphus) on the Isle of Rum, Scotland. We collected fecal samples non-invasively from known individuals and used them to count propagules of 3 helminth taxa (strongyle nematodes, Fasciola hepatica and Elaphostrongylus cervi). Using generalized linear models, we investigated associations between parasite counts and overwinter survival for calves and yearlings. Strongyles were associated with reduced survival in both age classes, and F. hepatica was associated with reduced survival in yearlings, whilst E. cervi infection showed no association with survival in either age class. This study provides observational evidence for fitness costs of helminth infection in juveniles of a wild mammal, and suggests that these parasites could play a role in regulating population dynamics.


Assuntos
Cervos , Helmintos , Metastrongyloidea , Parasitos , Animais , Cervos/parasitologia , Animais Selvagens/parasitologia , Probabilidade
15.
Nat Ecol Evol ; 6(8): 1231-1238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864228

RESUMO

Social relationships are important to many aspects of animals' lives, and an individual's connections may change over the course of their lifespan. Currently, it is unclear whether social connectedness declines within individuals as they age, and what the underlying mechanisms might be, so the role of age in structuring animal social systems remains unresolved, particularly in non-primates. Here we describe senescent declines in social connectedness using 46 years of data in a wild, individually monitored population of a long-lived mammal (European red deer, Cervus elaphus). Applying a series of spatial and social network analyses, we demonstrate that these declines occur because of within-individual changes in social behaviour, with correlated changes in spatial behaviour (smaller home ranges and movements to lower-density, lower-quality areas). These findings demonstrate that within-individual socio-spatial behavioural changes can lead older animals in fission-fusion societies to become less socially connected, shedding light on the ecological and evolutionary processes structuring wild animal populations.


Assuntos
Cervos , Envelhecimento , Animais , Animais Selvagens , Comportamento Social , Comportamento Espacial
16.
Proc Biol Sci ; 289(1977): 20220487, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765835

RESUMO

Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.


Assuntos
Depressão por Endogamia , Animais , Estudo de Associação Genômica Ampla/veterinária , Cavalos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Probabilidade
17.
Science ; 376(6596): 1012-1016, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617403

RESUMO

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.


Assuntos
Adaptação Biológica , Animais Selvagens , Evolução Biológica , Aptidão Genética , Adaptação Biológica/genética , Animais , Animais Selvagens/genética , Aves/genética , Conjuntos de Dados como Assunto , Variação Genética , Mamíferos/genética , Dinâmica Populacional , Seleção Genética
18.
Sci Rep ; 12(1): 3197, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210503

RESUMO

The adaptive immune system is critical to an effective response to infection in vertebrates, with T-helper (Th) cells pivotal in orchestrating these responses. In natural populations where co-infections are the norm, different Th responses are likely to play an important role in maintaining host health and fitness, a relationship which remains poorly understood in wild animals. In this study, we characterised variation in functionally distinct Th responses in a wild population of Soay sheep by enumerating cells expressing Th-subset specific transcription factors and quantifying Th-associated cytokines. We tested the prediction that raised Th1 and Th2 responses should predict reduced apicomplexan and helminth parasite burdens, respectively. All measures of Th-associated cytokine production increased with age, while Th17- and regulatory Th-associated cytokine production increased more rapidly with age in males than females. Independent of age, sex, and each other, IL-4 and Gata3 negatively predicted gastro-intestinal nematode faecal egg count, while IFN-γ negatively predicted coccidian faecal oocyst count. Our results provide important support from outside the laboratory that Th1 and Th2 responses predict resistance to different kinds of parasites, and illustrate how harnessing specific reagents and tools from laboratory immunology will illuminate our understanding of host-parasite interactions in the wild.


Assuntos
Parasitos/imunologia , Doenças Parasitárias/imunologia , Ovinos/sangue , Ovinos/imunologia , Ovinos/parasitologia , Linfócitos T Auxiliares-Indutores/imunologia , Imunidade Adaptativa , Animais , Citocinas/sangue , Fezes/parasitologia , Feminino , Fator de Transcrição GATA3/sangue , Fator de Transcrição GATA3/metabolismo , Interações Hospedeiro-Parasita , Interleucina-4/sangue , Masculino , Doenças Parasitárias/parasitologia , Fenótipo , Prognóstico , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Fatores de Transcrição/sangue
19.
Ecol Lett ; 25(4): 828-838, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35050541

RESUMO

Genes within the major histocompatibility complex (MHC) are the most variable identified in vertebrates. Pathogen-mediated selection is believed to be the main force maintaining MHC diversity. However, relatively few studies have demonstrated contemporary selection on MHC genes. Here, we examine associations between MHC variation and several fitness measurements including total fitness and five fitness components, in 3400 wild Soay sheep (Ovis aries) monitored between 1989 and 2012. In terms of total fitness, measured as lifetime breeding success of all individuals born, we found haplotypes named C and D were associated with decreased and increased male total fitness respectively. In terms of fitness components, juvenile survival was associated with haplotype divergence while individual haplotypes (C, D and F) were associated with adult fitness components. Consistent with the increased male total fitness, the rarest haplotype D has increased in frequency throughout the study period more than expected under neutral expectations. Our results demonstrate that contemporary natural selection is acting on MHC class II genes in Soay sheep and that the mode of selection on specific fitness components can be different mode from selection on total fitness.


Assuntos
Complexo Principal de Histocompatibilidade , Seleção Genética , Alelos , Animais , Variação Genética , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Masculino , Ovinos/genética
20.
Mol Ecol ; 31(4): 1281-1298, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878674

RESUMO

Sexually selected traits show large variation and rapid evolution across the animal kingdom, yet genetic variation often persists within populations despite apparent directional selection. A key step in solving this long-standing paradox is to determine the genetic architecture of sexually selected traits to understand evolutionary drivers and constraints at the genomic level. Antlers are a form of sexual weaponry in male red deer (Cervus elaphus). On the island of Rum, Scotland, males with larger antlers have increased breeding success, yet there has been no evidence of any response to selection at the genetic level. To try and understand the mechanisms underlying this observation, we investigate the genetic architecture of ten antler traits and their principal components using genomic data from >38,000 SNPs. We estimate the heritabilities and genetic correlations of the antler traits using a genomic relatedness approach. We then use genome-wide association and haplotype-based regional heritability to identify regions of the genome underlying antler morphology, and an empirical Bayes approach to estimate the underlying distributions of allele effect sizes. We show that antler morphology is highly repeatable over an individual's lifetime, heritable and has a polygenic architecture and that almost all antler traits are positively genetically correlated with some loci identified as having pleiotropic effects. Our findings suggest that a large mutational target and genetic covariances among antler traits, in part maintained by pleiotropy, are likely to contribute to the maintenance of genetic variation in antler morphology in this population.


Assuntos
Chifres de Veado , Cervos , Animais , Chifres de Veado/anatomia & histologia , Chifres de Veado/fisiologia , Teorema de Bayes , Cervos/genética , Estudo de Associação Genômica Ampla , Genômica , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...